- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Kalivas, John H. (4)
-
Spiers, Robert C. (3)
-
Norby, Callan (1)
-
Redd, Hyrum J. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Determining if target samples are members of a particular source class of samples has a large variety of applications within many disciplines. In particular, one‐class classification (OCC) is essential in many areas, such as food contamination or product authentication. There are numerous widely accepted methods for OCC, but these OCC methods involve optimizing tuning parameters such as the number of principal components (PCs). This study presents the development and application of a rigorous autonomous OCC process based on a hybrid fusion consensus technique, termed consensus OCC (Con OCC). The Con OCC method uses the new physicochemical responsive integrated similarity measure (PRISM) composed of multiple similarity measures all independent of optimization. Similarity values are fused to a single value describing the degree of sample similarity to a collection of samples. Two approaches are developed to translate each sample‐wise PRISM value to a probability of class membership: conformal predictionp‐values andz‐scores. These two methods are evaluated as separate Con OCC processes using seven datasets measured across a variety of instruments. In both cases, class membership labels are not used to set decision thresholds, and classifiers are not optimized relative to respective tuning parameters. Results indicate thatz‐scoring often produces better results, but conformal prediction provides greater consistency across datasets. That is,z‐score values tend to range across datasets while conformal predictionp‐values do not.more » « less
-
Spiers, Robert C.; Norby, Callan; Kalivas, John H. (, Analytical Chemistry)
-
Spiers, Robert C.; Kalivas, John H. (, Analytical Chemistry)
-
Spiers, Robert C.; Kalivas, John H. (, Journal of Chemical Information and Modeling)null (Ed.)
An official website of the United States government
